

原告からの提案

西淀川地区道路沿道環境に関する連絡会 2025年3月12日(水)

大気汚染患者の状況について

- ・全国の公健法被認定者数(大気汚染)は約 29,000人
- そのうち非高齢者は64%

大気汚染患者(30~50代)の状況について

- 就労に与える影響
 - 疾病が仕事に差し支える。
 - ぜん息のため正規職を諦めた人も。
 - 発作のために退職を促された人も。
 - 収入が不安定:自営業、非正規の人は発作が仕事 の減少に直結する
- 日常生活における不安
 - 将来の体調悪化、ステロイドの副作用
 - 症状のために人付き合いを差し控えている人も

公害患者を含め誰もが安心して暮らせる、 大気汚染患者を生まない 持続可能な環境・社会を目指す

提案の概要

二酸化窒素(NO2)濃度、PM2.5の推移

大気と交通の現状

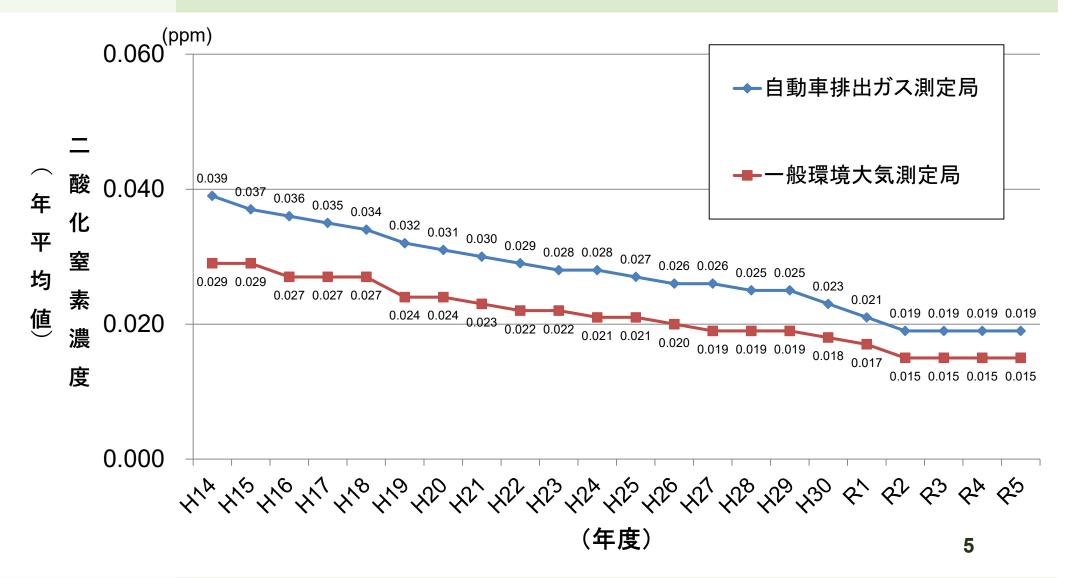
国道43号の交通量

環境ロードプライシングの概要

提案1 大型車と交通量削減を!

原告からの 提案

提案3 歌島橋交差点についての改善


提案4 国道43号沿道環境を考える実務者WGの継続

提案2 歩行者・自転車にやさしい交通環境対策を!

提案5 大気環境の改善の要因検証を!

NO2濃度の推移 ①大阪市平均

• 経年的に、ゆるやかな減少傾向にある

NO2濃度の推移 ②西淀川区出来島

- 令和5年度は<u>0.039ppm</u>。下限値を下回る
- 日平均値が0.06ppmをこえた日数 **--**NO2(日平均値の年間98%値、ppm) —NO2上限值(0.06ppm) NO2下限値(0.04ppm) ·NO2旧環境基準(0.02ppm) (ppm) (日) 100 0.100 90 0.075 0.076 80 0.080 70 .064 0.063 0.064
- 60 61 62 1.004 0.063 0.059 0.056 0.056 0.056 0.056 0.055 0.051 0.053 0.052 0.053 0.051 0.043 0.041 0.041 0.043 0.041 0.0

(年度)

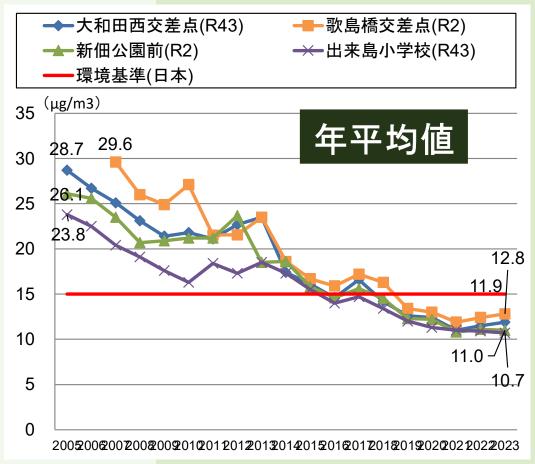
NO2の環境基準について

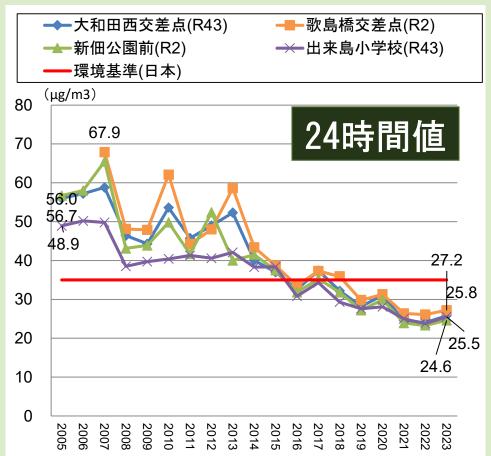
当初の環境基準(1973年5月8日告示)

1時間値の日平均98%値<u>0.02ppm</u>以下

大幅に 緩和

現行の環境基準(1978年7月11日告示)


1時間値の日平均98%値<u>0.04~0.06ppm</u> のゾーン内またはそれ以下


- 0.06ppmを超える地域は7年以内に0.06ppm達成に努める
- ゾーン内、または0.04ppm以下の地域は原則として現状程度の 水準維持または大きく上回らない

大気と交通 <u>の現状</u>

PM2.5の環境基準の安定的達成に向けた対策

・R1、R2、R3年度に引き続き、R4年度もすべての測定局で環境基準値を下回っている

PM2.5の環境基準の安定的達成に向けた対策

PM2.5とは

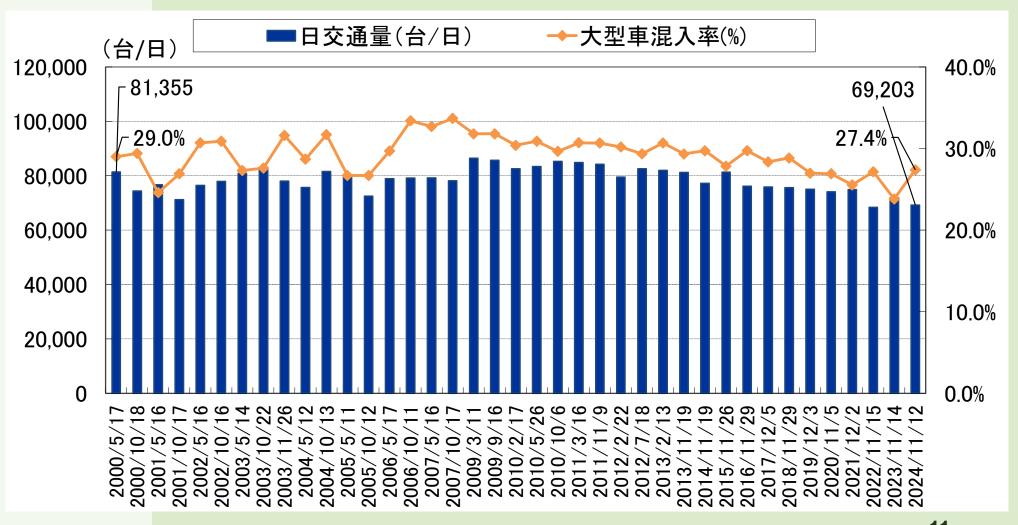
- 大気中に漂う浮遊 粒子のうち<u>粒径</u>2.5 μ m以下の小さ なもの
- 肺の奥まで入りやすく、**健康影響**の可能性が懸念
 - 呼吸器系
 - 循環器系
 - 肺がん

出典:米国EPA

PM2.5の環境基準の安定的達成に向けた対策

PM2.5の環境基準

- 2009年9月にPM2.5 の環境基準を設定(環境省)
- 2021年WHOが基準 を厳格化


	年平均值	日平均値
日本	$15\mu\mathrm{g/m}$	$35 \mu\mathrm{g/m}$
アメリカ	$12\mu\mathrm{g/m}^3$	$35 \mu \mathrm{g/m^3}$
中国	$35 \mu \text{ g/m}^3$	$75 \mu\mathrm{g/m}^3$
WHO (新基準)	5μg/m³	$15 \mu\mathrm{g/m}^3$

PM2.5の環境基準達成を継続するために

- ディーゼル自動車の交通量の減少
- ・自動車交通量の総量の減少 に関する交通対策が必要

国道43号の交通量

- R6年 全体の交通量は昨年度より微増、
- 大型車交通量、混入率はR5より増加

現況の環境ロードプライシングの概要

提案の概要

二酸化窒素(NO2)濃度、PM2.5の推移

大気と交通 の現状

国道43号の交通量

環境ロードプライシングの概要

提案1 大型車・交通量削減を!

原告からの 提案 提案3 歌島橋交差点についての改善

提案4 国道43号沿道環境を考える実務者WGの継続

提案2 歩行者・自転車にやさしい交通環境対策を!

提案5 大気環境の改善の要因検証を!

脱炭素社会の実現 2030年温室効果ガス 46%削減目標

■ 2030年に向けて大幅削減が必要になる

脱炭素社会に向けた道路施策を!

脱炭素社会に向けた取組は、大気汚染改善に大きく寄与する

- ・電気自動車や燃料電池自動車、公共交通や自転車のベストミックスによる低炭素 道路交通システム。
 - 2030年までに新車の乗用車の5~ 7割を次世代自動車。
 - 2035年までに乗用車新車販売で 電動車100% を実現。
 - 貨物・旅客事業等の電動車の開発・利用促進:2020 年代に5,000 台の先行導入。
- グリーン物流の推進(効率 化、モーダルシフト等)

15

国土交通省:「カーボンニュートラルに向けた道路分野の貢献について(R3.2.16)」「国土交通グリーンチャレンジ(R3.7.6).」

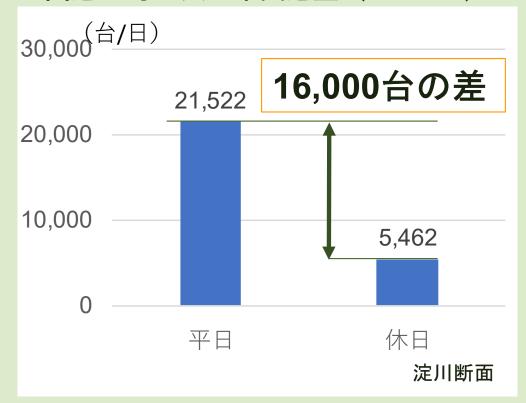
大型車・交通量削減を!

①国道43号の大幅な大型車削減に 向けた取組み

②エコドライブの普及、モビリティ・マネジメントの実施等

国道43号の大幅な大型車削減に向けた取組み

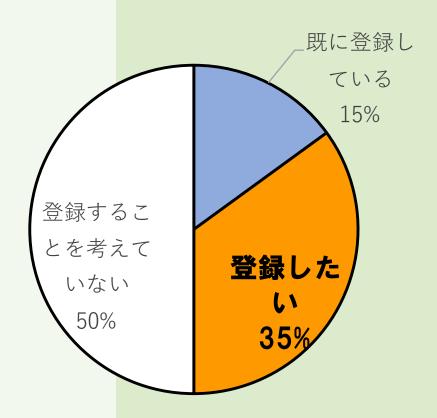
- ① 削減目標・達成目標年の設定を!
- ② 環境ロードプライシングの拡充
 - 湾岸線の割引、3号神戸線の値上げなど
- ③ 国道43号の車線削減、大型車の走行レーン指定(走行レーンの削減)
- 4 大型車削減に向けた総合調査(事業所・ドライバー対象の意向調査、より詳細な交通実態調査など)
- 5 西淀川地域の内陸部通過交通の抑制(国 道2号・府道大阪池田線の大型車流入規制、国 道43号の大型車夜間通行禁止、国道43号での環 境規制強化など) 17


環境ロードプライシングの拡充

1国道43号から5号湾岸線への転換の促進

大和田西交差点NO2濃度(2015)

国道43号の大型車交通量(2017.12)



平日の国道43号の大型車を湾岸線に転換できたら、大気は改善! 基礎調査:国道43号を利用している事業所に対する調査

環境ロードプライシングの拡充

②3号神戸線から5号湾岸線への転換 の促進

環境RPへの登録意向 (阪神高速2018アンケート)

3号神戸線大型車交通量 14,566台/日

3号神戸線の大型車15000台の35%が湾岸線に転換可能

14,566×35%=5,098台/日

環境ロードプライシングの拡充

③広報の拡大

- 対象事業者の把握、認知度調査
- ターゲットに合わせた情報発信の工夫
- 協力事業所に対する表彰制度
 - 環境にやさしい交通を行っている事業所として ホームページ等で公表

歩行者・自転車にやさしい交通環境対策を!

- ① 幹線道路沿道対策の強化
 - 大気浄化、沿道緑化、騒音・振動対策、 環 境レーンを
- ②歩行者・自転車にやさしい移動環境を

歩行者・自転車にやさしい交通環境対策

- ①大阪府内における環境レーンの設置
- ②国道43号線をはじめ幹線道路を安心して走行できる自転車走行ネットワークの整備
- ③国道43号沿道、及び、横断に関するバリアフリー化
- 4大幅な沿道緑化による緑のみちづくり
- 5安心して歩ける歩道ネットワークの整備

歩行者・自転車ネットワークの体系的整備を!

車優先の交通体系

転換!

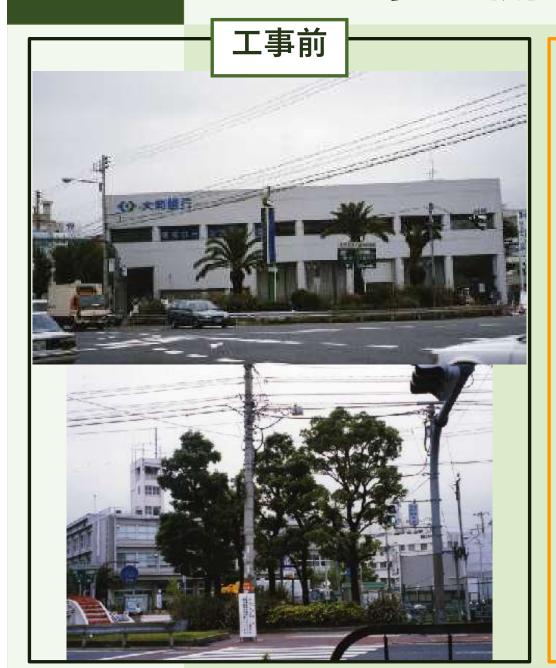
歩行者・自転車中心の交通体系

国道2号、43号に自転車レーンを

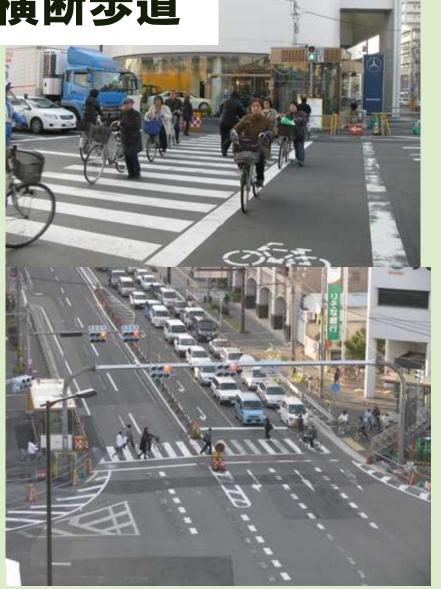
- 歩道を歩行者優先に
- 車を走りにくくし、交通量の 減少を目指す
- 府、市と連携した歩行者・自 転車ネットワーク整備を!

人にも環境にもやさしい歌島橋交差点

人にも環境にもや さしい交差点とし ての整備を!


歩車分離型信号を!

例:みてじま筋


みどりの多い歌島橋交差点を!

人にも環境にもやさしい歌島橋交差点

歌島橋交差点の自転車での地上横断

- 自転車活用推進法(2017年施行)
 - 自転車は車道を通行することが基本
- ・ 歌島橋交差点の地上を自転車で横断できない現状は問題

国道2号など、自転車の直進 だけでも通行できるような検 討はできないか?

道路標示イメージ

国道43号沿道環境を考える実務者WGの継続

議題整理、課題解決のためのアイデア出し、検討資料の作成などのための場とし、自由な意見交換を行う。

検討テーマ案

- ・R43から湾岸線への転換手法(啓発・割引等)
- ・大気汚染と交通量に関するデータ分析
- ・歌島橋交差点のあり方
- ・大気汚染問題への啓発(測定局の活用等)

等

大気測定局のサインについて

- 大気測定局は西淀川区民に存在が知られていない。
- 地域住民の参加による測定所アート・リニューアル
 - リニューアル案の公募・審査
 - 地域住民(子ども達)の参加でアート・リニューアル例:西淀川区内のアート・ペイントいろいろ

大気環境の改善の要因検証を

- 要因と考えられるもの
 - 環境ロードプライシングによる効果
 - ・大型車が湾岸線に経路転換したことにより、国道 43号、神戸3号の大型車交通量が減少
 - 単体規制の効果
 - 自動車NOx · PM法
 - 様々な道路環境施策の効果
 - 国道43号の車線削減、光触媒の塗布、高活性炭素 繊維. (ACF)、緑化など
 - (PM2.5) 中国からの黄砂の減少